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ANNUAL REPORT 2010:  Evaluation of CO2 Capture 

and Sequestration Using Oxyfuels with AMIGA 

Economic Modeling

 Oxyfuel CO2 recovery from pulverized-coal-fired power plants was extended 
across the existing fleet of domestic PC boilers linking process modeling (ASPEN) 
and assessing the economic impacts through a macroeconomic model (AMIGA—
All-Modular Industry Growth Assessment.)  The full energy cycle was considered, 
including mining, coal transportation, coal preparation, power generation, existing 
environmental regulations, facility water use, pipeline CO2 conditioning, and 
pipeline transport of CO2 to sequestration.  

 FY2010 $260K 

 Funding FY2008-2010 $780K

 Contractor Argonne National Laboratory

 Contractor Project Manager Dr. Mark C. Petri

 Principal Investigator Richard D. Doctor

 Co-Principal Investigator Dr. Donald A. Hanson

 Project Management Timothy Fout
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Current Project: Evaluation of CO2 Capture and 

Sequestration Using Oxyfuels with AMIGA Economic 

Modeling (FE49539 – Tim Fout)
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 Use ASPEN to model Oxyfuels retrofit across the existing fleet of domestic PC 
boilers as a CO2 Capture and Sequestration (CCS) strategy

 Cost-Engineering for Oxyfuels based on ASPEN

 Recognize that Oxyfuel investment may be a transitional strategy to 
Integrated Gasification Combined Cycle with CCS

 Link to an ongoing effort with the AMIGA (All-Modular Industry Growth 
Assessment) as the Computational General Equilibrium (CGE) macroeconomic, 
sector, & energy model

 Study the sectoral impacts of Oxyfuel CCS with AMIGA

 Limited consideration of site specific issues such as CO2 transport and water 
availability 
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Oxyfuels process modeling will accelerate deployment

1. PC Boiler Gas-side  – Oxyfuels compared to Amines —What are the benefits?  

– Oxyfuels avoids SCR, lowering costs.  

2. Oxygen delivery — What is the optimal O2 purity for Oxyfuels?

– Higher purity O2 is important in managing N2 and Argon. However, too high a purity of O2

leads to dis-proportionation. This is an economic trade-off.

3. Steam-cycle — What will be the impact on steam cycles?  

– Rebalancing the steam cycle and turbines will be necessary for CCS using Amines

4. Flue Gas Desulfurization — What is CO2 leakage with sulfur control? 

– There is a clear advantage to supplying higher purity O2 from ASU.  CO2 leakage justifies O2

use for Forced Oxidation

– Moisture from FGD increases costs of downstream CO2 conditioning

5. CO2 conditioning – What will CO2 conditioning  cost? 

– 2 cold boxes are not sufficient for meeting some reservoir specifications and an EOR CO2

tower was added

– Dilution of CO2 by non-condensable gases Argon, O2 and N2 lowers the temperature required 
for liquefaction

Process design supplies essential intermediate stream 

details addressing important process issues
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Energy System Simulations Instill Investor 

Confidence in Undertaking Oxyfuel Retrofits. 
Our simulations highlight four scenario cases as listed below:

1. Attractive Private Investment. Electric utilities naturally like to life extend their 
existing power plants while addressing CO2 emissions.

– How will parasitic load and derating be mitigated through system-wide 
adjustments?

2. Perceived GHG urgency.  Actions that can be accomplished in the near- to 
medium-term may be favored in today’s policy environment.

– Might near-term retrofits be mandated?

– How will experience with retrofits accelerate other generating technologies 
with CCS?

– How will Oxyfuel retrofits play under economy-wide GHG reduction targets 
in 2050?

– What are resulting economy-wide CO2 emissions?
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Energy System Simulations Instill Investor 

Confidence in Undertaking Oxyfuel Retrofits. 
Scenario cases (Continued)

3. Transportation Electrification. Demand for generation technologies will increase. 

– What will comprise the expanded generation fleet to accommodate plug-in 
vehicles, new electric regional transit, and continued growth in innovative 
electric devices?

4. Energy Security Needs. Domestic coal use with CCS fosters energy security.

– Will global transition economies continue with rapid growth?

– Will co-production plants be needed to supplement petroleum, particularly 
diesel fuel?
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Air and Oxyfuel systems were run at 150, 300 and 

450 MW with 3 standard coals – These are being 

explored with variations in O2 95-99.5% 
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ASPEN: Oxyfuels – Steam-side simulation

Critical to comparing Amine retrofits to Oxyfuels
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FGD with electrolytes: 450 MW Oxyfuel IL#6 coal
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Reaction Type Stoichiometry

1 Equilibrium 2 H2O  <-->  H3O+  +  OH-

2 Equilibrium CO2  +  2 H2O  <-->  H3O+  +  HCO3-

3 Equilibrium HCO3-  +  H2O  <-->  H3O+  +  CO3--

4 Equilibrium SO2  +  2 H2O  <-->  H3O+  +  HSO3-

5 Equilibrium HSO3-  +  H2O  <-->  H3O+  +  SO3--

6 Equilibrium CAOH+  <-->  CA++  +  OH-

CASO3(S) Salt CASO3(S)  <-->  CA++  +  SO3--

CASO3*HM Salt CASO3*HM  <-->  CA++  +  SO3--  +  0.5 H2O

CA(OH)2 Salt CA(OH)2  <-->  CAOH+  +  OH-

CACO3(S) Salt CACO3(S)  <-->  CA++  +  CO3--
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Forced Oxidation 3.9 tonne/h O2
The 2:1 O2:SO2 rate may be high – send O2 55% to boiler

73.5 tonne/h Air >> 0.0164 k tonne/h CO2
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FGD Design Conditions for 99.5% SO2 removal

 L/G 85 -115 gal/1000 acfm

 Forced Oxidation O2/SO2 – 2:1 

 Forced Oxidation air to Crystallizer from Cryogenic ASU O2 (99.6% purity) to avoid 
N2 and Argon infiltration

 Thickener underflow 35% solids (and operating temperature) 

 Gypsum Sulfate:Sulfite (10:1) also occluded water

 For 450 MW Oxyfuel – Illinois #6 coal

– Oxygen use = 3.9 tonne/hr

– CO2 “slip” with Air Forced Oxidizer off-gas= 16 tonnes/hr

– Argon in CO2 exit gas goes up by 10%

– CO2 leakage justifies O2 use for Forced Oxidation

– Dilution of CO2 by non-condensable gases Argon, O2 and N2 lowers the temperature 
required for liquefaction to levels that may not be achievable with evaporative cooling 
towers alone.

– The concentration of non-condensable gases may violate safe operating specifications 
for the pipeline.

10
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Weyburn CO2 delivery operates under reducing 

conditions with H2S (not SO2 as in Oxyfuels) it is O2 free

11

Kenneth Vargos, Restaged CO2 compressors, new pumps remove bottleneck at Weyburn,

Oil & Gas Journal November 16, 2009 Vol. 107 Issue 43 (Note: the high Hydrocarbons are C1-C3)
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CO2 Delivery and Recirculation using 4 cold boxes 

followed by an EOR CO2 tower (10 ppm O2 case)
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Process Design - Conclusions

 Process design supplies essential intermediate stream details 
addressing important process issues

 Oxyfuels process modeling will accelerate deployment
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Managing Your Existing Plant Asset: Considerations

 When is the best time to retrofit your unique plant?

– Retrofit costs may decrease with R&D results; performance may increase

– Experience/learning will increase over time

– Price of a CO2 allowance (carbon charge) will likely increase

– Plant may be in need of refurbishment

 Positive tradeoffs

– Less expenditures on carbon allowances

– More efficient due to attendant refurbishment/life-extension investments

– Higher Capacity Factor due to lower total variable costs (i.e., higher dispatch)

 Negative tradeoffs 

– Loss of electricity sales due to capacity derating after retrofit

– Retrofit/refurbishment capital outlays (but less than a new advanced coal plant)
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Overview of the AMIGA Model General Equilibrium System 

including the Utility Planning and Compliance Model and Unit 

Inventory
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Economic Equilibrium Solution 

with diverse Households,  

Labor, Industries, and 

Energy-related Services

Given scenario storyline/policies 

(AMIGA Economic Model 
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Analysis of Carbon Reduction Policy Scenarios

 In this scenario, electricity demand is growing at an average of 0.89% per year:

– Increased electrification from plug-in HEVs

– Increased electrification from continued growth in electrical/electronic equipment

– Balanced by greater energy efficiency efforts

 Increased gas production from the Marcellus and other gas shales, under a carbon 
policy, is diverted from power generation to industrial/commercial CHP, and 
transportation uses (CNG LDV fleets, LNG heavy truck fleets)

 Based on our Stanford University Energy Modeling Forum simulations we use a 
price path for CO2 which grows at 2% per year (about the rate of economic 
growth), but with an initial 5-year phase-in period

 The CO2 price path shifts up if the overall CO2 reduction target needs to be tighter

 In the following run:

– 368 existing PC units (150 GW) are retrofitted with CCS over the period 2022 to 2038

– These tend to be the newer, larger, more efficient units

– The average size is 410 MW

– NETL and partners meet capture performance and cost goals for existing and new units
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Generation Showing the Conversion of 368 Existing Units to 

Carbon Capture and Storage and the Penetration of New 

Advanced Design Oxycombustion and IGCC plants
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Coal Use May Dip in the 2035 Period
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CO2 Emissions from Existing Units Mostly Disappear
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Existing Plant CO2 Emissions
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CO2 Capture from Existing Units Provides an Opportunity to 

Gain Experience with CCS Prior to Major Investment in 

New Advanced Oxyfuel and IGCC Designs
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Existing Plant CO2 Capture
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Anticipated Further Work

 Update the AMIGA economic model with the latest thinking on electrification of 
transportation (plug-in HEVs, high speed rail) and the rapid growth in 
electrical/electronic equipment, “i.e. Miscellaneous Electrical Loads”, or MELS

 Provide an economic analysis of how the increasing natural gas production will 
best be used in competing markets for gas (e.g., transportation, CHP)

 Simulate the benefits of retrofitting existing power plants with CCS to meet 
electrification demands and Energy Security

 Apply selection criteria and cost estimates for ramping up PC unit retrofits with 
CCS using Phase 2 Enegis data base (as it becomes available)

– Simulate low carbon capacity expansion using the AMIGA Utility Planning and 
Compliance model

– Provide regional system dispatch (how existing units are used in the system)

– Serve on the Federal/Industry Steering Committee (FISC)

 Participate in the Stanford EMF-24 study, showing the role of retrofitting existing 
units with CCS.
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